Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation
نویسندگان
چکیده
منابع مشابه
Modelling, Analysis and Simulation Modelling, Analysis and Simulation Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation
In this paper we study the convergence of a multigrid method for the solution of a two-dimensional linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods. For the Baumann-Oden and for the symmetric DG method, we give a detailed analysis of the convergence for celland point-wise block-relaxation strategies. We show that, for a suitably constructed two-dimension...
متن کاملComputing and Visualization in Science Regular article Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation
In this paper we study the convergence of a multigrid method for the solution of a two-dimensional linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods. For the Baumann–Oden and for the symmetric DG method, we give a detailed analysis of the convergence for celland point-wise block-relaxation strategies. We show that, for a suitably constructed two-dimension...
متن کاملModelling, Analysis and Simulation Two-level Fourier analysis of a multigrid approach for discontinuous Galerkin discretisation
In this paper we study a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed analysis of the convergence for different block-relaxation strategies. We find that point-wise block-partitioning gives much better results than the classical cell-wise partitioning. Both for the Baumann-Oden and for th...
متن کاملTwo-Level Fourier Analysis of a Multigrid Approach for Discontinuous Galerkin Discretisation
In this paper we study a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed analysis of the convergence for different block-relaxation strategies. We find that point-wise block-partitioning gives much better results than the classical cell-wise partitioning. Both for the Baumann-Oden and for th...
متن کاملModelling, Analysis and Simulation Fourier two-level analysis for discontinuous Galerkin discretization with linear elements
In this paper we study the convergence of a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, and we give a detailed analysis of the convergence for different block-relaxation strategies. In addition to an earlier paper where higher-order methods were studied, here we restrict ourselves to methods using piecewise li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computing and Visualization in Science
سال: 2004
ISSN: 1432-9360,1433-0369
DOI: 10.1007/s00791-004-0136-1